Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae
نویسندگان
چکیده
Nutrient enrichment of shallow coastal waters changes the composition of plant communities so that slow-growing, benthic macrophytes are replaced by fast-growing algae such as phytoplankton and ephemeral macroalgae. This scenario suggests that fast-growing algae suffer more from nutrient limitation than slow-growing algae at low nutrient availability. We tested this hypothesis by comparing the effect of in situ nutrient enrichment on the phytoplankton community, 4 ephemeral macroalgae (Ulva lactuca, Cladophora serica, Chaetomorpha linum and Ceramiurn rubrum) and 1 perennial macroalga (Fucus vesiculosus). Nitrogen was the main limiting nutrient to algal growth and fast-growing algae were N limited for a longer period during summer than slower-growing species. Differences in the temporal extent of N limitation were related to species-specific variations in N requirements for growth and in N storage pools. The N requirements per unit biomass and time were up to 30-fold higher for fast-growing algae compared to slow-growing species due to 10-fold faster growth and 3-fold higher demands for the internal N concentration needed to sustain maximum growth (i.e. critical concentrations). The pools of N reserves only varied 2-fold among algal species and could support maximum growth for 0.5 d in the phytoplankton community and for 12 d in E vesiculosus. Growth of phytoplankton and E vesiculosus could proceed at reduced rates for another 2.6 and 34 d. respectively, based on other internal pools of N. The results suggest that the species-specific differences in growth rate and critical N concentrations account for a substantial part of the variation in the duration of nutrient limitation among different algal types and, therefore, provide further clarification of the reasons why fast-growing algae are stimulated by increased nutrient availability while slowgrowing algae remain unaffected or are hampered due to shading.
منابع مشابه
Relationship between nutrients and phytoplankton biomass based on chlorophyll prediction model in Zribar Lake of Kurdestan, a case study
Zaribar Lake is a little shallow lake in Kurdistan province of Iran and it is faced to eutrophication.The study of phytoplankton biomass-nutrient relations is important in eutrophication management and there are many empirical models to predict phytoplankton biomass (chlorophyll a) based on nutrient (nitrogen and phosphorous) amounts in the lake. Evaluation of these empirical models and compar...
متن کاملInvertebrate-mediated Nutrient Loading Increases Growth of an Intertidal Macroalga
Even in nitrogen-replete ecosystems, microhabitats exist where local-scale nutrient limitation occurs. For example, coastal waters of the northeastern Pacific Ocean are characterized by high nitrate concentrations associated with upwelling. However, macroalgae living in high-zone tide pools on adjacent rocky shores are isolated from this upwelled nitrate for extended periods of time, leading to...
متن کاملHarmful Algal Blooms and Eutrophication: Nutrient Sources, Composition, and Consequences
Although algal blooms, including those considered toxic or harmful, can be natural phenomena, the nature of the global problem of harmful algal blooms (HABs) has expanded both in extent and its public perception over the last several decades. Of concern, especially for resource managers, is the potential relationship between HABs and the accelerated eutrophication of coastal waters from human a...
متن کاملFast Detection of Nutrient Limitation in Macroalgae and Seagrass with Nutrient-Induced Fluorescence
BACKGROUND Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll flu...
متن کاملNutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment1
Phytoplankton can become limited by the availability of nutrients when light and temperature are adequate and loss rates are not excessive. The current paradigms for nutrient limitations in freshwater, estuarine, and marine environments are quite different. A review of the experimental and observational data used to infer P or N limitation of phytoplankton growth indicates that P limitation in ...
متن کامل